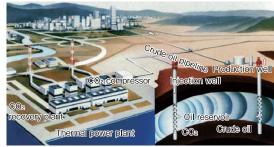
Efficient CO2 separation and recovery from atmospheric pressure flue gas by chemical absorption


The Kansai Electric Power Co., Inc./Mitsubishi Heavy Industries, Ltd. CO₂ separation and recovery system from combustion flue gas

KM-CDR Process® Feature

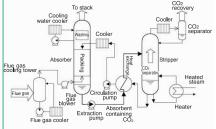
- Recovered high purity CO₂ can be used for boosting production of fertilizers and methanol, as well as EOR applications.
- Significant reduction in energy consumption and absorbent loss, compared to existing technologies.
- A simple structure comprised of easily available materials is suitable for construction since 1999 in developing countries.

Boosting urea production recovered from flue gas (Malaysia)

EOR using CO2 recovered from flue gas

Overview (Technical principles, actions, etc.)

1) Chemical absorption principle


The flue gas introduced into the cooling tower is subsequently introduced into the absorber tower, and comes in contact with the CO₂ absorbent solution flowing down on the filler inside the absorber tower. During the process, CO2 is absorbed by the solution, while nitrogen and other substances are left in the gas. The CO₂-rich solution is then guided to the stripper and steamed to separate CO2. The lean solution after the CO2 is removed is reintroduced into the absorber tower to be reused as a CO2 absorbent solution. The separated CO2 is dehydrated in the CO2 separator and then recovered as high-purity CO₂ (99.9%).

2) Technology progression

We began researching carbon capture technology in 1991, including the development of a proprietary solvent (KS-1™), by 1994 the required energy for CO2 capture had already been reduced by 20% from conventional technology. Further advancements are being made year on year, the latest process only requires approximately 68% of the energy required by conventional technology. Absorbent degradation/loss and corrosion issues have also been significantly reduced.

3) The system does not require special materials, thanks to due to the low corrosive properties of KS-1[™]. An operation pressure close to atmospheric and simple configuration facilitate the construction of large-scale systems.

Recovery system mechanism

· companies/Companies with CO₂ applications

Water

Energy saving/Energy recovery

Energy storage/Energy creation

New energy

Air

Soil

Other

Commercial Track Record

The technology	Country	Purpose	Capacity	Launch year
is applied at	Malaysia	Increase in urea production	160t/d	1999
urea produc-	Japan	Multi-purpose	283t/d	2005
tion plants and	India	Increase in urea production	450t/d×2	2006
other facilities	UAE	Increase in urea production	400t/d	2009
around the	India	Increase in urea production	450t/d	2009
	Bahrain	Increase in urea production	450t/d	2009
world.	Vietnam	Increase in urea production	240t/d	2010
	Pakistan	Increase in urea production	340t/d	2011
	India	Increase in urea production	450t/d	2012
	Qatar	Increase in methanol production	500t/d	2014

Effects

- ◎ By introducing a CO₂ recovery system into a urea production plant and making minor modifications to the system, fertilizer production is increased and the CO₂ emissions of the plant are reduced.
- **○**By introducing a CO₂ recovery system into a methanol production plant and making minor modifications to the system, the carbon-hydrogen ratio in the materials is optimized and methanol production is increased. The CO₂ emissions of the plant are reduced at the same time.
- ©Enhanced oil recovery (EOR) applications improve crude oil productivity by pressurizing the oil fields and reducing the viscosity Launching a CO₂ recovery system for the EOR applications can significantly increase crude oil productivity, while storing large amounts of CO₂ in oil fields.
- Recovering CO₂ from a large amount of flue gas from thermal power plants and storing the CO₂ in an aquifer will directly help prevent global warming.

The Kansai Electric Power Co., Inc.		3-11-20 Nakoji, Amagasaki, Hyogo 661-0974 Japan		
• TEL / +81-50-7104-2426	FAX / +81-50-7104-2587	http://www.k	epco.co.jp/	
Mitsubishi Heavy Industries, Ltd. Infrastructure Business Group, Plant Business Department, Energy & Environment		nvironment	3-3-1 Minatomirai, Nishi-ku, Yokohama, Kanagawa 220-8401 Japan	
• TEL / +81-45-200-6743	FAX / +81-45-200-9301	• http://www.mh	i.co.jp/	

*Note: This publication introduces examples of technologies and products believed useful towards solving environmental and energy problems. In no way does it constitute guarantees concerning their transfer or sale.