特徴

■ ブレーキで粗破砕、プレインで細破砕を行う複合破砕のため、一括混合投入が可能である
■ 各組成別に特徴的な破砕粒度分布が得られるため、機械選別精度が向上する
■ 垂型で投入口を大きくできるため、長尺物や嵩ものを効率よく破砕できる

概要（技術の原理・動作等）

金属スクラップ破砕選別施設は、廃車・廃家電などの金属スクラップから、資源を回収する施設である。このような施設では、破砕物の粒度分布や形状が、機械選別の精度に大きく影響を与える。

垂型破砕機は、衝撃・剪断・圧縮・摩擦による複合破砕を繰り返す、高速回転旋の破砕機である。組成別に特徴的な粒度分布が得られ、機械選別精度が向上するため、日本国内で多くのプラントに採用されている。

導入実績

■ 日本国内では、家電・OAリサイクル用に15基、その他金属スクラップ（廃車ボディ、ダイカイ粉等）用に66基以上の実績がある。
■ 海外では、2017年度より営業活動を開始し、インドネシア、韓国、中国に計10台の実績がある。
（中国は2010年11月納入予定）

効果

◎ 能力48t/dの破砕機を導入したプラント（鉄原料生産量24t/d）を10施設建設した場合
鉄鉱石から鉄鋼を生産する高炉・転炉よりも、スクラップから鋼を生産する電炉の方が効率がよいため、高炉鋼と電炉鋼の分野におけるエネルギー消費量、CO₂発生量が抑えられる。

① 鉄鋼生産における消費エネルギー削減量（GJ/年）= 1,055,000 GJ/年

= 24×10×250×(5600 - 1400)×1.86 ×1000

前提条件 鉄原料生産量：24t/d・施設、建設施設数：10施設、年間運転日数：250日/年、高炉鋼エネルギー原単位：5,600Mcal/t、電炉鋼エネルギー原単位：1,400Mcal/t

② 鉄鋼生産におけるCO₂削減量（t-CO₂/年）= 102,000 t-CO₂/年

= 24×10×250×(2.0 - 0.3)

前提条件 高炉鋼CO₂単位：2.0 t-CO₂/t、電炉鋼CO₂単位：0.3 t-CO₂/t