

けいはんな学研都市で育つ 新産業の芽

先進的な研究施設が多数立地し、日々活発な研究活動が行われている けいはんな学研都市(関西文化学術研究都市)。

今後の都市運営の指針を示した「サード・ステージ・プラン」では研究成果の産業化が 特に重要であるとされている。今回は実績を上げつつある代表的な研究機関の活動や 産業化が期待できる研究成果、産業化促進活動などについて紹介する。

けいはんな学研都市の今

けいはんな学研都市は、都市構想の時代から約 30年が経ち、2006年度より都市全体の一体的な運 営をめざすサード・ステージに入っている。近年、 けいはんな新産業創出・交流センターの開設、け いはんな学研都市と北京市中関村科技園区との交 流事業、近鉄けいはんな線の開業などが進み、そ れらと呼応して、06年3月に国土交通省が取りま とめたサード・ステージ・プランでは、産学官連 携による新産業の創出、国際化に向けた学研都市 の活動展開、都市内での実証実験の展開、都市基 盤・交通基盤の整備促進などが掲げられている。

都市内の施設数は1999年度から4~5年間は横

ばいで推移していたが、関西経済の好転や自治体 の施策による立地基準の緩和などに伴い、05年度 から06年度にかけて大学施設・民間企業の研究施 設・ベンチャー企業など約20施設が新たに立地 し、07年12月末現在で106件、進出機関数は270件 あまりとなっている(グラフ1)。研究者数も増え ており、96年には都市全体で3.830人(外国人研究 者含む)であったが、07年には5.706人と10年間で 約1.5倍となっている。

研究分野別研究者の比率は情報通信が約40%と 一番高く、次いでナノテク・材料、環境となって いる(グラフ2)。特定の分野に絞らず幅広い研究 が行われている点が、持続可能な発展をめざすけ いはんな学研都市の特徴の一つともいえる。

光医療産業バレー構想を推進する 日本原子力研究開発機構関西光科学研究所

最近、けいはんな学研都市内で注目されている 研究所の一つが日本原子力研究開発機構の関西 光科学研究所である。同研究所では1995年の設 立以来、光量子ビーム(レーザー)や放射光の利用 研究を行ってきた。

その成果として特に期待されているのが、産学 官連携で開発を進めている「小型がん診断・治療 器 |。これは研究活動で培った最先端のレーザー 駆動粒子線加速技術と最新の医療技術を融合さ せることにより、革新的な医療を実現する診断・ 治療機器などを研究開発する取り組みである。さ らにその研究開発を通じて、関連研究者、技術 者、企業家などの人材育成と光医療産業の創出を もめざして日本原子力研究開発機構より提案され たのが「光医療産業バレー構想」である。

■光医療産業バレー構想とは

がん治療に使う放射線療法のなかでも、粒子線 治療法は体内の患部のみに粒子線を集中して治療 することができるため、従来のX線治療法に比べ 副作用の少ない治療が可能となる利点がある。し かし、現状では粒子線加速器等の治療施設はビル ディングサイズの大型規模となり建設費は百億円 超となる。また健康保険適用外の治療のため患者 の治療費負担は約300万円程度と普及は難しい。

関西光科学研究所の持つレーザー駆動粒子線加

〈レーザーによる小型化実現で粒子線治療を普及〉

建設費:100億円以上

大きさ:10m程度、建設費:10億円 低コストで、普通の病院に設置可能

速技術を応用した新たながん治療器の開発が成功 すれば、治療施設は一般の病院内にも設置できる ほど小型化することが可能となり、建設費、治療 費もそれぞれ従来比10分の1程度となる革新的な 治療機器が誕生することになる。

また、この開発を通じて異分野との融合・連携 を深化することにより、がん治療機器の開発のみ ならず他の産業への技術の応用や人材育成を進 め、さまざまな分野でのイノベーション創出も視 野に入れた活動を行うことをめざしている。

07年5月、本構想は文部科学省科学技術振興 調整費の大型外部資金プログラムの一つである 「先端融合領域イノベーション創出拠点の形成」 に「光医療産業バレー拠点創出」として採択され た。これに伴い、日本原子力研究開発機構はこの 構想に特化した「光医療研究連携センター」を発 足。センターは産学官との協働体制、システム改 革、研究成果創出といった観点から資源を集約、 効率的にプロジェクトを実施する組織として活動 している。

〈「光医療産業バレー|拠点創出〉

10年~15年後に起こすイノベーションの姿

レーザー駆動粒子線加速技術と粒子線がん治療・診断技術を融合することで「小型 がん診断・治療器」を実現し、全国どこでも「切らずに治せるがん治療」を普及。

実施機関:日本原子力研究開発機構

協働機関:浜松ホトニクス㈱、ウシオ電機㈱、㈱東芝、兵庫県立粒子線 医療センター、㈱島津製作所、㈱豊田中央研究所、ベンタックス㈱、 ㈱)フジクラ、日本アドバンストテクノロジー㈱、侑HOC

「レーザー加速」 (レーザー駆動粒子線加速) 日本原子力研究開発機構) 粒子線がん治療装置を画 期的に小型化(超小型化)

「粒子線医療 | (がん治療法、兵庫県立 粒子線医療センター) (PET診断、㈱島津製作所) 診断と治療をリンクして 「病巣を確認しながら治

10年後~15年後に起こすイノベーション

- I. 「切らずに治せる| コンパクトな粒子線治療器
- Ⅱ.「小さなうちに見つけ早く治す」治療技術
- Ⅲ、「病巣を確認しながら照射する」精密・安全治療
- Ⅳ. 医工融合領域での実践的養成
- V. レーザー駆動粒子線がん治療器の普及を通じた 人材雇用

粒子線がん治療 4,

■光医療産業バレー構想の今後

「先端融合領域イノベーション創出拠点の形成」 プログラムでは、10年間にわたる期間のなかで3 年めに再審査、7年めに中間評価が行われる。こ の再審査までに各機関と協働して活動し、イノ ベーションを創出できる体制を構築、加速装置や 測定装置などの超小型がん治療器の開発につなが る一定の成果を生み出す必要がある。

関経連では、けいはんな新産業創出・交流セン ターと共に、研究成果の活用・普及、技術移転な ど、本構想の実現に向け、推進支援することで光 医療産業の発展に貢献していく。

事業化に向けて展開中の有望シーズ

けいはんな学研都市の研究機関では、長年にわた る研究開発の成果として、シーズの事業化が起こり つつある。その事例を紹介する。

三 語の壁を崩す音声自動翻訳技術(ATR)

1986年に設立された国際電気通信基礎技術研究所 (ATR)では、人と通信のインターフェースを中心テ ーマに先端研究に取り組んでいる。その中で、音声 言語コミュニケーション研究所では、日英、日中の 「音声翻訳技術」(話し言葉を、異なる言語を話す相手 との間で相互に翻訳する技術)の研究開発を行い、事 業化を進めている。

ATRの音声翻訳技術は、音声認識・言語翻訳・音声 合成の3つの要素技術と、日英で100万文にも及ぶ音 声対訳の例文データベースから成り立っている。既 に日常旅行会話を対象にこのシステムをパソコンに 組み込んだスタンドアローンの翻訳機が完成してお り、日英の場合TOEIC600点のスコアの人と同等の翻 訳能力を持っている。また、従来の翻訳機では難しか ったさまざまな発音・声質の音声や雑音を含んだ環 境にも対応が可能である。

ATRではこのシステムをもとに、携帯電話用音源 LSI等を製造・販売するフュートレック(本社:大阪 市)と業務提携し、携帯電話での音声認識の実用化を はかっている。2007年11月に発売されたNTTドコモ 905 i シリーズでは、4機種に日英双方向の翻訳サー ビスとして標準搭載されている。携帯端末に向かっ て発話すると、音声を正確に判断して語意を特定し、 その内容をセンターのサーバが翻訳、結果を端末に 相手言語の文字で返すもので、発話から返信まで数 秒で対応する。その他、携帯電話での音声入力によ る地図情報検索などにもATRの技術が事業化されて いる。

今後、ATRは話題の拡張を含めたビジネス展開を 進める予定であり、さらに、北京五輪で音声翻訳の実

〈スタンドアローンの音声自動翻訳端末〉

〈携帯電話による翻訳サービス〉

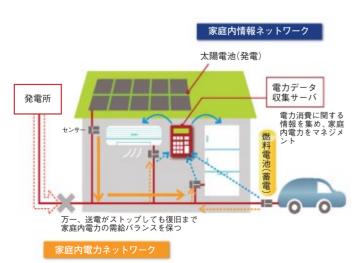
トップの画面

音声入力画面

翻訳結果出力画面

証実験を行う情報通信研究機構(NICT)と連携する 予定である。また、06年には多言語対応をめざして、 日本・中国・韓国・インドネシア・タイ・インド・台 湾の研究機関と音声翻訳基盤技術の共同研究コンソ ーシアム(A-STAR)を発足させており、アジアの言 語の壁の克服に向けた取り組みが始まっている。

スットワーク化で家庭生活をもっと快適・ 便利に(NICT)


NICT知識創成コミュニケーション研究センターの ユニバーサルシティグループでは、生活環境のあら ゆる場所にコンピュータがとけ込んでいるユビキタ ス・コンピューティングの実現に向けた情報通信技 術の研究開発を行っており、センサーやネットワー ク(NW)が完備され、独立した生活空間「ユビキタ スホーム」での実証実験を行っている。

その一つが総務省の主催する「ホームNWの接続実 証実験 |。コンテンツサービス事業者、通信キャリア、 AV機器メーカー、エネルギー事業者などの参加のも と、異なるメーカーの複数種類の情報家電をホーム NWでつなぎ、相互接続実証実験を行っている。この 技術が実用化すると、メーカーや規格に関係なくビ デオカメラで撮った映像をすぐにリビングのテレビで 見たり、パソコンにためた音楽データをサッと携帯音 楽プレーヤーに入れたりといったことがホームNWを 通じて簡単にできるようになると期待されている。

さらに、ユビキタスホームでは、電力NWと情報 NWの統合による家庭内電力センサーNWの実験も 行っている。これは、家電と電力NWの間にセンサー を設置し、電力消費に関する情報をサーバに集める ことでセンシングNWを構築し、家電間の優先的な 電力配分や消費計画を計算して家庭内電力のマネジ メントを行うものである。

例えば、一定時間に一戸の家で使う電力量を設定 すれば、複数の家電を使って電力量がオーバーした 場合にも、照明器具の照度を下げるなどして電力量 を一定に保つことができるようになり、家庭内で電 力の需給のバランスがとれた生活が可能となる。昼 夜間電力の平準化なども期待できる。また、万一、 地震や事故などで発電所からの送電が止まった場合 にも、自家発電装置で重要な家電に優先的に給電を 行うなど、各家庭が発電・蓄電機能や電力マネジメ ント機能を使い、復旧まで家庭内電力の需給バラン スを保つことができるようになる。

〈家庭内電力センサーネットワークのイメージ〉

バイオ燃料を実用化へ導くRITE菌 (RITE)

地球環境産業技術研究機構(RITE)は、地球温暖 化問題の解決を目標に、①革新的な環境技術の開発、 ②CO2吸収源の拡大を国際的に推進する中核的研究 機関として1990年に設立された。

その取り組みの一つとして、セルロース系バイオ マスからのバイオ燃料(エタノール)製造新技術を研 究している。セルロースを原料とするバイオ燃料の 強みは、植物の茎など非可食の繊維質を原料とする ため食糧資源と競合しないこと、ガソリンが排出す る温室効果ガスに対して約90%の削減効果があるこ と(国際エネルギー機関等の調査報告による)などで ある。また、経済性や生産量についても将来の実現 性は高いと見込まれている。しかし、セルロース原 料法の工業化に向けては、「高効率なバイオプロセス の確立しという課題がある。これに対してRITEでは 糖をアルコールに変換する微生物 "RITE菌"を開 発、従来のセルロース系バイオエタノール製造プロ セスと比較してアルコール変換の効率を飛躍的に向 上させることを可能にした。

〈RITEバイオプロセスと従来法との比較〉

RITF バイオプロセス

増殖抑制条件にて、反応槽に微生物を高密度に充填して物質生産

- 増殖を伴わないため、
- ■細胞を高密度に充填可能

高生産性

■エネルギーロスが無く原料収率が高い

従来のバイオプロセス

増殖を伴うため、

■増殖のためのスペースが必要 ■増殖に連動した物質生産

この技術を用いて、RITEは本田技術研究所と共 同で早期工業化をめざす取り組みを世界に先駆けて 進めている。07年3月には同研究所内にパイロット プラントが完成し、08年からは工業生産へ向けた実 証試験設備の設計・建設を開始する予定である。

これに加えRITEでは、ディーゼルエンジンの燃料 である軽油への混合が可能なバイオブタノールの革 新製法についても研究に取り組んでいる。

産業クラスター形成に取り組む 「けいはんな新産業創出・交流センター」の活動

「しナいはんな新産業創出・交流センター」とは

けいはんな学研都市には、そこで育まれた高度な 技術シーズを地域の強みとして最大限に生かしなが ら産業化へと展開するとともに、自らの羅針盤とも 言うべき「サード・ステージ・プラン」に従って、文 化・学術研究・産業の調和がとれた高度な都市運営 を推進することが期待されている。

その一端を担う機関として2005年に発足したのが、 けいはんな新産業創出・交流センター(以下、セン ター)。センターは①研究成果の事業化促進、②地域 産業の振興、③広域連携の推進、④国際交流の促進 をその主な活動とし、設立以来、けいはんな学研都 市の特徴を生かし、産学官の連携による産業クラス ターの形成に取り組んできた。以下に最近の取り組 み状況と今後の方向性を紹介する。

世界レベルの技術シーズの発掘・事業化に 向け研究会を設置

けいはんな学研都市、そして関西経済のさらなる 発展のためには、前述の日本原子力研究開発機構関 西光科学研究所の光・レーザー技術をはじめ、「けい はんな発しのシーズの一層の発掘に努め、新産業創 出の実績につなげていかなければならない。

しかし、こうしたシーズは技術レベルが高度にな ればなるほど、事業化・商品化のマッチングを見極 めることが難しくなる。研究を研究で終わらせるこ となく産業利用まで発展させるためには、真の「目 利き」の力も借りながら、技術シーズの課題と利活 用を十分に検討する必要がある。

そこで、センターでは、技術シーズごとに研究成 果の事業化促進に向けた研究会を設置(図1)。産学 官の各機関が、研究会を通じて各技術シーズの課題 に関する共通認識を形成し、新産業創出に向けた活 動を推進するための支援を行っている。

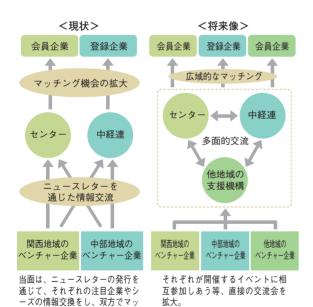
〈図1 研究成果の事業化促進に向けた研究会〉

研究成果の事業化促進に向けた研究会 (※設立予定を含む) (1) 光医療産業バレー研究会(医療、ものづくり) (2) レーザー微細加工研究会(ものづくり) (3) ITソフトウェアコラボレーション(IT、ICT) (4) ミュージアム &ICT研究会(IT、ICT) (5) けいはんなセキュリティー研究会 (6)環境バイオ研究会 (7) ユビキタス特区研究会(ICT) (8) 予防医学研究 産学公連携コンソーシアム(医療・健康) (9) 実装CAE共同研究プロジェクト(ものづくり)

合言葉は「職員全員がコーディネータ」

センターでは「職員全員がコーディネータ」を合 言葉に、日々、企業とのコミュニケーションを密に することにより、技術シーズと事業ニーズのマッチ ング頻度を高めるよう努めている。それに加えて、 地元の中小・ベンチャー企業経営者を対象に経営ス キル向上のための各種セミナーを開催。優良中小企 業の創出・育成と企業同士のネットワーク形成の促 進をはかっている。

さらに、知見や人脈を持ち、社会貢献意欲のある 企業OBの方々をエキスパートボランティア(EV)に 任命し、自発的なコーディネート活動を進めてもら うことでマッチングを一層充実させる取り組みも行 っている。この活動は企業OBに活躍の場を提供す ることにもなっており、「シニア人材の活用」という 社会的要請にもこたえるもの。現在もけいはんな地 域在住のEVを募集している。


このような熱心なコーディネート活動により、本 年度は販路拡大および技術移転において、企業支援 21件、販売貢献額1億6,270万円(07年度11月末現在。 06年度は同7件、4.965万円)の成果を得ている。

他 地域との連携でマッチング成果の向上を

活動の柱の一つである広域連携を推進するため、 センター、神戸の新産業創造研究機構、京都リサー チパーク、大阪産業振興機構との4者間で意見交換 を行う連絡会を定期的に開催。相互のレベルアップ をはかるとともに、関西地域内の連携を進めている。 さらに、広域連携の新たな試みとして、センターで は07年度より中部経済連合会(中経連)の下部組織で ある中経連新規事業支援機構との連携を行っている。

まずはそれぞれの地域が持つシーズの情報交換か らスタート。これはけいはんな学研都市をはじめ、関 西地域の持つ技術シーズ・ベンチャー企業の情報を、 関西地域と同様にものづくりを得意とする中部地域 との間で提供し合い、マッチングエリアを相互に拡 大することでともどもに成果を向上させることをね らいとしている。

〈図2 けいはんな新産業創出・交流センターと 中経連新規事業支援機構等との連携イメージ〉

現在、情報交換は、主に年3~4回発行するセン ターのニュースレターを活用して行っている。将来 的には関西・中部のそれぞれの地域で開催するマッ チングイベント等において、両地域の企業出展を行 うといった発展策も検討している(図2)。

チング機会の拡大をはかる。

センターはこの中部地域との連携手法をもとに、 他地域との連携も視野に入れており、一層の広域的 なマッチング活動への展開が期待される。

■ 際研究開発の拠点としての取り組み

国際交流を促進する活動としては、けいはんなプ ラザ内に「けいはんな国際ビジネス交流サロン」を 設置。2006年以来、ボランティア団体の協力を得て センターが運営を行っている。現在、サロンでは主 に海外からの研究者とその家族のための日本語教室 の開催や相談などが行われており、彼らの日々の生 活を支援している。

また、05年にけいはんな学研都市が中国北京市・ 中関村科技園区(科技園区=サイエンスパーク)と交 流促進協定を締結したことから、センターでも同地 区との交流活動を進めている。07年12月には、双方 の立地企業の参画を得て「日中環境ビジネス・ミー ティング」を開催するなど、環境分野を中心とした 交流の強化を展望している。

エキスパートボランティア(EV)の活動事例

EVの河野武平氏は、センターが開催したシーズフォーラ ムでのシーズ紹介をきっかけに、マイクロ波による磁性体の 発熱効果に着目。内面に焼結した磁性塗料から発生する遠赤 外線により加熱調理が行われる、新しい原理の電子レンジ用 調理鍋「共鳴焼」を完成させた。

昨年からは、千趣会を通じて「レンジdeクックウェル」と しても販売されており、短時間でおいしく調理ができるとテ レビでも紹介され、好評を博している。

